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Introduction

Variation of species in different habitats is central 
to understanding how and if a species will survive the 
demands of habitat change (Da Silva et al. 2013).  It is 
well known that species can adapt to cope with a change 
in ecosystem (Orr and Smith 1998; Measey et al. 2011; 
Langin et al. 2015).  Some species of lizards are highly 
adaptive, and thus natural selection can enable the 
survival of these species in many habitats by changing 
their morphology to maximise fitness (Darwin 1871; 
Losos et al. 1997; Hopkins and Tolley 2011; Da Silva 
et al. 2013; Collins et al. 2015).  Ecological divergence 
demonstrates the plasticity of a species, and if they are 
likely to survive a sudden change in habitat (Losos et al. 
1997; Bickel and Losos 2002; Losos 2009; Measey et al. 
2011; Da Silva et al. 2013).   

A study by Losos et al. (1997) demonstrated how 
readily adaptable Anolis lizards are by placing A. sagrei 
on islands with different habitats.  After only 10–14 y, the 
researchers found that the morphology of the lizards had 
changed significantly in relation to the type of habitat.  
Lizards within a leafy environment had bigger toe pads 
allowing them to stick to the leaves while lizards in a 
densely clustered environment had smaller toe pads 
and limbs allowing them to balance on the substrate 
(Losos et al. 1997, for a similar and more recent study 
see Collins et al. 2015).  This demonstrates how natural 
selection changes the morphology of animals to enable 
survival in new habitats.  

Deforestation can change a habitat dramatically as 
degraded habitats can occupy different prey, predators, 
microhabitats, roosting availability, and thermal 
requirements compared to primary habitats (Vitt et al. 
1997; Keren-Rotem et al. 2006; D’ Cruze and Kumar 
2011; Shirk et al. 2014).  Any or all of these factors 
can affect the morphology of species.  Measey et al. 
(2009) showed that two ecomorphs of the Cape Dwarf 
Chameleon (Bradypodion pumilum) had formed due 
to being either in an open or closed habitat.  In open 
habitat, males had larger head measurements than males 
in closed habitat.  However, Da Silva and Tolley (2013) 
studied morphological differences in five phenotypic 
forms of Bradypodion and found that chameleons in 
closed forested areas developed larger heads compared 
to chameleons in open grassland habitats.  Dietary shifts 
could explain these different results because Herrel et al. 
(2008) found that with the Italian Wall Lizard (Podarcis 
sicula), a change in habitat was associated with a change 
in diet, which can ultimately influence head morphology.

Although many herpetofaunal taxa such as anole 
lizards (Losos et al. 1997), skinks (Melville and Swain 
2000), chameleons (Meseay et al. 2009), geckos 
(Collins et al. 2015), and snakes (Aubret et al. 2004) 
have been recorded to phenotypically diverge due to 
exposure to different habitats, the rate of deforestation 
may be occurring too fast for some species.  Shirk et 
al. (2014) found a dramatic decrease in chameleon 
populations in the Usambara Mountains in Tanzania due 
to habitat loss, suggesting that morphological change 
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Figure 1. A Leaf Plated Chameleon (Brookesia stumpffi) in 
primary habitat on Nosy Be, Madagascar.  (Photographed by 
Richard Bloomfield).

Miller.—Variation of Brookesia stumpffi in relation to different habitats.

may not occur fast enough to allow survival of some 
species.  Similarly, D’ Cruze and Kumar (2011) found 
that lizard abundance had decreased in deforested areas.  
Additionally, deforestation can change the biocenosis of 
a habitat.  Vitt et al. (1998) found that although clearing 
forests in the Amazon rainforest had caused heliothermic 
lizard species to become more abundant, this limited the 
resources for other ectotherms.  

Madagascar is a biodiversity hotspot, with many 
endemic species of flora and fauna (Myers et al. 2000).  
It is home to 85 species of endemic chameleons (Uetz, 
P., P. Freed, and J. Hošek. 2017. The reptile database. 
Available at http://reptile-database.reptarium.cz/adva
ncedsearch?Taxon=chameleonidae&location=Madag
ascar&submit=Search [Accessed 15 June 2017]).  The 
deforestation of Madagascar is increasing with the use 
of techniques such as slash and burn and logging, which 
limits chameleons roosting microhabitats and potentially 
puts them at greater risk of predation (Raxworthy 1991).  
Furthermore, these deforestation techniques clear the 
forest of vegetation and alter the thermal environment 
(Vitt et al. 1998; Lawrence and Vandecar 2015; 
Longobardi et al. 2016) affecting ectotherms.  Allnutt 
et al. (2012) found that in northeastern Madagascar, 
anthropogenic habitat disturbance was considerably 
higher in 2011 compared to 2005.  At the same time, 
many of the Madagascan chameleons are increasingly 
becoming endangered (International Union for the 
Conservation of Nature [IUCN] 2016).

The genus Brookesia is a clade of dwarf chameleons 
that appear terrestrial in behaviour compared to other 
chameleons, and are found mostly in the leaf litter 

during the day and roosting on small saplings during the 
night (Glaw and Vences. 2007).  These chameleons are 
endemic to Madagascar (Raxworthy 1991; Glaw and 
Vences. 2007) with 30 currently recognized species, 
although 24 are categorized as Near Threatened to 
Critically Endangered on the IUCN Red List of 
Endangered Species (IUCN 2016).  Due to the difficulty 
in finding endangered or near threatened species, I 
studied the Plated Leaf Chameleon (Brookesia stumpffi; 
Fig.1), a species listed as Least Concern by the IUCN, 
as they are commonly found in all habitat types (see 
Raxworthy 1991, for a description of B. stumpffi).  Like 
most Brookesia species, B. stumpffi forage for small 
insects, and at a total length (including tail) of up to 100 
mm, B. stumpffi is one of the larger species of Brookesia 
(Crottini et al. 2012).

Any knowledge gained from this species could be 
used as guidance for other ecologically similar species 
of Brookesia.  I aimed to identify if B. stumpffi differs 
in their morphology and roosting behaviors in primary, 
secondary, and degraded habitats.  If the chameleons 
have diverged, this research will lead to hypotheses 
about why, and if not, it could suggest that B. stumpffi is 
not very plastic and that deforestation may reduce their 
population.

Materials and Methods

I studied chameleons on Nosy Be, an island northwest 
of Madagascar.  Brookesia stumpffi are commonly 
found in primary, secondary, and degraded habitats 
on this island (Andreone et al. 2003).  Primary habitat 
refers to untouched forest with minimal anthropogenic 
disturbance and an almost complete canopy cover.  
Secondary habitat refers to the natural regrowth of 
cleared forest over 30 y, with occasional anthropogenic 
disturbance, and partial canopy cover.  Degraded 
habitat refers to a cleared forest with no canopy cover.  
In this survey, the degraded habitats suffered from 
intense logging and a large amount of anthropogenic 
disturbance.  Google Earth images show the degraded 
habitats as experiencing habitat loss and anthropogenic 
disturbance for at least 12 y (Google Earth 2015).  

I carried out the fieldwork along with field assistants 
between early May and late July 2016, the dry season.  
All data collection was conducted at night, 1900–2230, 
to identify the chameleons roosting height and substrate.  
I established two 200 m transects in each habitat type; 
thus, six transects were surveyed in total (Fig. 2).  I only 
surveyed for adult chameleons (snout to vent length 
[SVL] > 30 mm, Raxworthy 1991; Crottini et al. 2012) 
to ensure their full development in head morphology.  
I collected data on 25 B. stumpffi in each habitat type. 
I and the other surveyors relied on death feigning to 
measure the individuals in the field and any individuals 
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that did not naturally death feign were placed back to 
ensure minimal stress to the individuals. 

Using a 3 m tape measure, I took measurements 
of the roosting height of individual chameleons and I 
recorded the roosting substrate.  I grouped the substrate 
into four categories: Shrub, Sapling, Leaf Litter, and 
Other.  Other included a branch and a fallen palm frond.  
I handled all chameleons and while the chameleons 
were death feigning, I measured the morphology of 
the lizard using analog calipers accurate to 0.1 mm.  I 
marked the chameleons with a non-scented marker to 
ensure independent samples.  I collected snout-vent 
length (SVL), tail length (TaiL), crest head height 
(CHH), head length (HL), head width (HW), and jaw 
length (JL; Bickel and Losos 2002; Hopkins and Tolley 
2011).  Volunteers measured SVL but I made all head 
measurements of chameleons.  I measured HW across 
the head at the lowest part of the head armour, CHH from 
the highest point of the crest to the lower jaw, JL from 
the front of the mouth back to the join of the mouth, and 
HL by drawing a perpendicular line from the front of the 
mouth to the back of the head, close to the jaw line (Fig. 
3).  I compared morphological and roosting data (height, 
substrate) among the three habitat types: primary (n = 
25), secondary (n = 25), and degraded (n = 25).

I found that the variable Roosting Height did not 
meet the assumptions for parametric analysis despite 
log transforming.  Therefore, I used Kruskal-Wallis 
to compare differences between roosting heights and 
habitats.  If significant, I made pairwise comparisons 
with the Mann-Whitney U test for which I used the 
adjusted P values.  The adjusted significance levels were 

given by multiplying the unadjusted significance values 
by the number of comparisons, setting the value to 1 if 
the product was greater than 1.  I used Chi-square with 
the likelihood ratio to compare substrates (See McHugh 
2013 on using the likelihood ratio). 

When analyzing the morphology measurements, I 
first conducted a Pearson’s Product Moment Correlation 
to determine if any of the variables were correlated.  
None of the variables were highly correlated (r < 
0.6).  When testing for parametric assumptions for 
the morphological variables, only SVL and CHH met 
parametric assumptions (Shapiro Wilks test > 0.10, 

Figure 2. Approximate layout of six transects used to census Plated Leaf Chameleons (Brookesia stumpffi) on Nosy Be, Madagascar.  The 
letter P reflects the two primary transects, S the two secondary transects, and D the degraded transects. (Image from Google Earth 2015). 

Figure 3. Head morphological measurements of Plated Leaf 
Chameleons (Brookesia stumpffi) on Nosy Be, Madagascar: Head 
Width (A), Crest Head Height (B), Jaw Length (C), and Head 
Length (D).
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Levene’s test > 0.08).  I used ANOVA to compare these 
two variables to the different habitat types, using habitat 
as a fixed factor.  I tested the other variables using 
Kruskal-Wallis.  Again, I used Mann-Whitney U tests 
for the pairwise comparisons of significant results, and I 
used adjusted P values.  For all tests, α = 0.05.

Results

Roosting selection.—I found B. stumpffi roosting as 
low as 2.67 cm and as high as 83.40 cm above the ground 
(Fig. 4).  The median height of roosting was 34.50 cm in 
degraded habitat, 35 cm in secondary habitat, and 23.50 
cm in primary habitat (Fig. 4).  Roosting heights differed 
significantly among the three habitats (H = 14.90, df = 2, 
P = 0.001).  Chameleons roosted at a significantly lower 
level in primary habitats compared to secondary (U = 
˗21.96, P = 0.001) and degraded habitats (U = ˗18.90, P 
= 0.006).  However, there were no significant differences 
between secondary and degraded habitats (U = 3.060, 
P = 1.000; Fig. 4).  Of the four types of substrates on 
which B. stumpffi roosted, Saplings were the most used 
across the habitat types (Table 1).  The use of roosting 
substrates by chameleons was not significantly different 
among the habitat types (χ2 = 11.50, df = 6, P = 0.074).

Morphological measurements.—The mean SVL of 
B. stumpffi varied from 40.17 to 37.75 among habitats 
(Table 2) but differences were not significant (F2,72 = 
1.77, P = 0.177).  The mean morphological measurement 
CHH varied from 8.56 to 8.04 among habitats and also 
did not differ significantly (F2,72 = 2.76, P = 0.070).  The 
other morphological measures did differ significantly 
among habitats (TaiL, H = 8.45, df = 2, P = 0.015; HW, 
H = 6.15, df = 2, P = 0.046; HL, H = 14.67, df = 2, P = 
0.001; JL, H = 8.89, df = 2, P = 0.012).  The measures 
TaiL, HL, and JL, were significantly smaller in degraded 
habitats compared to primary habitats (Table 3), and 
HL was also significantly smaller in degraded than in 
secondary habitats (Table 3).

Discussion

Ecological differences in available habitats may 
have influenced the selective forces shaping B. stumpffi 
roosting behavior and morphology.  Chameleons living 
in primary, secondary, and degraded habitats varied 

Figure 4. Median roosting heights (mm) of Plated Leaf 
Chameleons (Brookesia stumpffi) on Nosy Be, Madagascar, 
in primary, secondary, and degraded habitats.  The open circles 
indicate probable outliers and the asterisks indicate the significant 
level between the habitat types (** = P < 0.01, n.s = no significant 
effect).  

Table 1. The number of roosting substrates used by 75 Plated 
Leaf Chameleons (Brookesia stumpffi) along six transects in three 
habitat types on Nosy Be, Madagascar.

Substrate Primary Secondary Degraded

Sapling 20 24 18

Shrub 3 1 6

Other 2 0 0

Leaf Litter 0 0 1

Table 2. Mean (± standard deviation) of morphological 
measurements (in mm) of Plated Leaf Chameleons (Brookesia 
stumpffi) in three habitat types on Nosy Be, Madagascar.  
Abbreviations are SVL = snout-vent length, CHH = creast head 
height, TaiL = tail length, HW = head width, HL = head length, 
JL = jaw length.

Measurement Primary Secondary Degraded

SVL 40.17 ± 4.36 39.30 ± 5.09 37.75 ± 4.37

CHH 8.38 ± 0.75 8.04 ± 0.61 8.56 ± 0.96

TaiL 35.08 ± 3.85 33.47 ± 3.89 30.44 ± 5.72

HW 8.33 ± 0.63 7.92 ± 0.53 8.33 ± 1.05

HL 12.42 ± 0.97 11.67 ± 0.93 11.19 ± 1.26

JL 9.70 ± 0.77 9.60 ± 0.80 8.89 ± 1.09

Table 3. Results of Mann-Whitney U pairwise comparisons between the morphological measurements of Plated Leaf Chameleons 
(Brookesia stumpffi) and habitat types on Nosy Be, Madagascar, using adjusted P values.  Abbreviations are TaiL = tail length, HW = head 
width, HL = head length, JL = jaw length.  Significant values are P < 0.05*, P < 0.01**, P < 0.001***.

Morphology Measurements Degraded-Secondary Degraded- Primary Secondary- Primary 

TaiL U = 9.90, P = 0.325 U = 17.88, P = 0.011* U = 7.98, P = 0.586

HW U = -11.82, P = 0.165 U = 2.46, P = 1.000 U = 14.28, P = 0.061

HL U = 6.12, P = .962 U = 22.80, P = 0.001** U = 16.680, P = 0.020*

JL U = 13.80, P = 0.075 U = 17.40, P = 0.014* U = 3.60, P = 1.000
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in their roosting behavior.  Individuals in degraded 
and secondary habitats roosted significantly higher 
compared to primary habitats.  Due to less canopy 
cover in secondary and degraded habitats, it is likely 
that vegetation grows faster in these areas compared 
to primary habitats, reducing the number of smaller 
saplings.  Additionally, the thermal environment 
would be different in degraded and secondary habitats 
compared to primary forest (Smith and Ballinger 2001; 
Reisinger et al. 2006), and this could create a divergence 
in roosting height, as well as more abundant nocturnal 
ground dwelling predators, such as certain species of 
snakes (Raxworthy 1991).  Despite these findings, there 
were no significant differences between the habitat types 
and substrate B. stumpffi were roosting on, suggesting 
there is similar vegetation in each of the habitat types. 

Brookesia stumpffi has not only diverged in roosting 
behaviors, but I also found morphological differences 
across the habitat types.  In contrast to Measey et al 
(2009), but similar to Da Silva and Tolley (2013), the 
head length and jaw length of B. stumpffi were smaller 
in degraded habitats compared to primary habitats.  
Head shape is frequently influenced by diet (Hjelm et al. 
2002; Aubret et al. 2004; Herrel et al. 2008), and lizards 
therefore may be responding to differences in prey size 
distributions between habitats.  Smaller head length and 
jaw length measurements indicate a weak bite force 
(Huyghe et al. 2005; Measey et al. 2009; Measey et al. 
2011; Da Silva et al. 2013), which can be due to smaller 
or softer prey items (Hofer et al. 2003; Aubret et al. 
2004).  This may be occurring on Nosy Be in degraded 
habitats where selection may favor smaller-headed 
B. stumpffi, which are exploiting a novel food source.  
Further research should be conducted to quantify the 
items B. stumpffi is eating in each habitat. 

Tail length in B. stumpffi was longer in primary 
habitats.  Tail length is often related to locomotion 
and performance in chameleons (Tsuji et al. 1989; 
Hopkins and Tolley 2011; Measey et al. 2009).  Brickel 
and Losos (2002) found a difference in tail lengths 
depending on whether chameleons were terrestrial 
or arboreal.  Although all Brookesia are terrestrial 
chameleons (Brickel and Losos 2002), this finding could 
still suggest that they have less use for their prehensile 
tail in degraded habitats.

In 2000 and 2010, laws were passed in Madagascar 
to stop logging of rosewood (Dalbergia) and ebony 
(Diosryros) trees; however, this activity is still 
ongoing (Innes 2010).   My research could lead to 
future studies investigating if these chameleons are 
adapting to deforestation.  If this species is adapting to 
deforestation, B. stumpffi may be of least concern for 
extinction rates because they can rapidly diverge more 
than other Brookesia species.  However, these roosting 
and morphological differences could also be due to 

fixed genetic differences or non-adaptive plasticity.  My 
research demonstrates that B. stumpffi have diverged 
in roosting behaviors and morphology between 
primary, secondary, and degraded habitats and has led 
to intriguing patterns worthy of further study.  A better 
understanding of why these chameleons are diverging 
may be a useful model of how ectotherms might fare in 
a rapidly changing world.
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